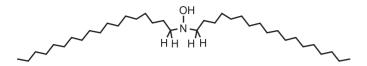
Greener, safer, and more effective **Chemistry**

16F., No. 51, Sec. 2, Keelung Rd., Taipei City 110, Taiwan


sales@chitec.com

\$\\$ +886-2-2700-6678

Revonox® 420V

The Phenol-free Antioxidant derived from palm oil

Revonox® 420V

CAS No.: 1374859-51-4

FCN No. : 1663

Introduction

Revonox® 420V is an antioxidant derived from palm oil using Chitec's proprietary process that eases customers' concerns from its tallow-based predecessor. As a phenol-free primary antioxidant, Revonox® 420V is resistant to gas-fading, while other hindered phenolic antioxidants are not (Figure 1). It also has an excellent initial color and an anti-yellowing property, as shown in Figure 2.

Revonox® 420V demonstrates excellent synergistic effects which contribute to excellent initial color and physical property retention when formulated with phosphite antioxidants or HALS, as shown in Table 1 and 2. Its outstanding performance compared with conventional hindered phenolic antioxidant systems is especially suitable for applications with polypropylene (PP), polyethylene (PE) fibers/films and in automotive TPO, as well as polyolefins.

Recommended Applications

Revonox® 420V is highly recommended for use with phosphite antioxidants or hindered amine light stabilizers such as Deox 68 and Chiguard® 228. These combinations can be used in the following applications to enhance thermal stability.

- · PE, PP
- · Polyolefin fibers / films
- · Automotive TPO
- · Food contact packaging

Physical Data

Appearance : White free-flowing powder

Odor : Odorless
Bulk density : 0.55 g/ml
Ash content : 0.1% max
Melting point : 90 - 96 °C

Solubility (g in 100ml solvent @ 25 °C)

 Heptane
 : < 0.1</td>

 Ethyl acetate
 : < 0.1</td>

 MEK
 : < 0.1</td>

 Toluene
 : < 0.1</td>

 Water
 : Insoluble

Figure 1. Gas-fading Resistance of Revonox® 420V

Before Test NO / NO₂ NO / NO₂

Revonox® Phenolic AO Revonox® Phenolic AO 420V Deox 10 420V Deox 10

Figure 2. Initial Color Control of Revonox® 420V

1000 ppm Revonox® 420V / Deox 10 / Deox 68 = 15 : 42.5 : 42.5

Substrate: BOPP Film

1500 ppm Deox 10 / Deox 68 = 1 : 2

Table 1. Synergistic Effect of Revonox® 420V

_	_		
	Blank	AO-1	AO-2
Deox 10		300°	
Deox 68		600	
Revonox® 420V			300
Chiguard® 944		300	300

Yl after extrusion

1st pass	-2.97	-0.21	-2.47
3rd pass	-0.91 ^b	2.14	-0.74
5th pass	2.24b	5.38	0.42

Conditions:

- 1. Plastic: virgin pp
- 2. Extrusion temperature: 220 °C
- 3. Calcium stearate: 200ppm, DHT-4V: 200ppm
- a: unit= ppm
- b: MI failed

Table 2. Synergistic Effect with Phosphite AO

	Standard	AO-1	AO-2
Deox 10	333ª		
Deox 68	666	666	
Revonox® 420V		333	333
Revonox® 608			666

Yl after extrusion

1st pass	1.14	-0.14	-1.41
3rd pass	8.56	3.2	0.08
5th pass	9.76	4.16	0.48

Conditions:

- 1. Plastic: virgin pp
- 2. Extrusion temperature: 220 °C
- 3. DHT-4V: 200ppm
- a: unit= ppm

Strengths of Revonox® 420V

- 1. Phenol free
- 2. Resistant to gas-fading
- 3. Low color contribution
- 4. Excellent melt-flow strength retention
- 5. FDA approved